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COLUMN STRENGTH OF H-SECTIONS AND SQUARE TUBES 

I N  WSTBUCKLING RANGE OF COMPONENT PLATES 

By P. P. B i j l a a r d  and G. P. Fisher 

The column buckling stress i n  the range where the component p la tes  
have buckled is  calculated by the method of s p l i t  r i g id i t i e s .  For the  
e l a s t i c  range simple formulas a re  derived which expl ic i t ly  express the 
column buckling s t r e s s  i n  terms of the Euler buckling s t r e s s  of the 
column, the p la te  o r  loca l  buckling s t r e s s ,  and the loca l  buckling stress 
fo r  a higher mde of buckling. 
i s  proposed which i n  the buckling-stress - slenderness diagram i s  tan- 
gent t o  the curve f o r  the elastic column buckling stress i n  the post- 
buckling range. 

F o r t h e  p l a s t i c  range a Johnson parabola 

Also the case of i n i t i a l l y  crooked columns i s  considered. 

Tests were carried out f o r  a considerable range of slenderness r a t i o s  
on three H-sections and two square tube sections. The experimental ulti- 
mate buckling s t resses  are i n  excellent agreement with those predicted by 
the theory. 

INTRODUCTION 

The theore t ica l  investigation is primarily concerned with buckling 
phenomena i n  the e l a s t i c  range. 
care of by using an appropriate Johnson parabola. 

The influence of p l a s t i c i ty  is  taken 

I n  the e l a s t i c  range columns with given cross section and with slen- 
derness r a t io s  f o r  which the column buckling s t r e s s  ( the  Euler s t r e s s  Q )  
is  lower than the p la te  o r  l oca l  buckling s t r e s s  
buckling a t  the s t r e s s  uE ( f ig .  1). If the slenderness r a t i o  i s  smaller 
than t h a t  value ( L / r ) i n  i n  f i g u r e  1 a t  which uE = uCrl, l oca l  buckling 

occurs a t  a s t r e s s  acrl independent of the slenderness ra t io .  It was 
shown i n  reference 1 that f o r  the sections considered i n  t h i s  paper, t h a t  
is, H-sections and square tubes, the interact ion between column and loca l  
buckling is  negligible. 

ucrl f a i l  by column 
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I n  short columns a f t e r  l oca l  buckling, the average compressive 
s t r e s s  may s t i l l  increase considerably above the c r i t i c a l  p l a t e  buckling 
stress u c r l  before the ultimate s t r e s s  au i s  reached. For very short 
columns where, a l so  a f t e r  the decrease of the r ig id i ty  of the column by 
p la te  buckling, no column buckling can occur, the ultimate s t r e s s  uu 
w i l l  be equal t o  the crushing strength ucc i n  figure 1. For longer 
columns, but with a slenderness r a t i o  smaller than 
ure 1, the ultimate s t r e s s  i s  smaller than 

buckling of the component p la te  decreases the effect ive f lexura l  r igid- 
i t y  of t h e  column as a whole, so that the  columns f a i l  by column buckling 
a t  an average s t r e s s  uu smaller than ucc. 

I 

I 

(L/r)in i n  f ig-  
ucc because the loca l  

A s  an example, a tube with square cross section i s  considered. A t  
the c r i t i c a l  s t r e s s  
simply supported a t  the unloaded edges ( so l id  l i nes  i n  f i g .  2(a) ) . 
the postbuckling range, the r i g i d i t y  of the column against fur ther  com- 
pression w i l l  decrease. This i s  shown i n  f igure 3, where the average 
s t r e s s  uav i s  plot ted against the uni t  shortening of the column. 
The diagram OAE3 shows that fo r  aveiage s t resses  higher than  ucrl the 
modulus against  fur ther  compression i s  smaller than 
the e l a s t i c  modulus For the present case, where the unloaded 
edges of the plates  a re  f ree  t o  t rans la te  i n  the l a t e r a l  direct ion and a re  
not held s t ra ight ,  it follows from reference 2 that 
( f i g .  3) .  Assume that a t  an average s t r e s s  uav = uu ( f i g .  3 )  the effec- 
t i v e  f lexural  r i g id i ty  of the column has beccme so small that it begins 
t o  buckle in  the direction a ( f i g .  2( a) ) as a column. This w i l l  gen- 
e ra te  bending s t resses  i n  the column ( f i g .  2 (b ) ) ,  that i s ,  extra  
compressive s t resses  a2 t o  the r igh t  and extra t e n s i l e  s t resses  a2 
t o  the  l e f t  of the axis .  The extra  compressive stresses t o  the  r igh t  
w i l l  cause deflecting forces 

the coordinate x 
arrows i n  figure 2(a) ,  which tend t o  increase the p l a t e  deflections 
by amounts w2. The extra t ens i l e  s t resses  a2 t o  the l e f t  cause 

ucrl, the walls w i l l  buckle as p la tes  which a re  
I n  

daa,/dcav = tan '4 
E = t an  'po. 

4 

t an  '4 = 0.4H 

a2 

-to2(a2w/&?) per un i t  surface (measuring 

i n  the direct ion of the column ax i s ) ,  as  indicated by 
w1 

def lect ing forces that diminish the p l a t e  deflections 
cated i n  figure 2 (a ) .  
dashed form, superimposing deflections 
upon the deflections wl. 

wl, as a l so  indi- 
Hence the cross section w i l l  tend t o  assume the 

w2, as sketched i n  f igure 2(c) ,  

I n  the plates  BC and AD the extra s t resses  a2 a r e  higher than i n  
the p la tes  p;B and DC. Moreover, with respect t o  the extra  deflections w2, 
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I 
.: 

BC and AD a c t  as  plates  with widths b, while AB and DC a c t  as  p la tes  
with widths ( f ig .  2( c )  ) . 
t o  bend out much more than AB and DC, so tha t  the former w i l l  be elas- 
t i c a l l y  restrained by the l a t t e r .  I f  no i n i t i a l  deflections a r e  present, 
an e l a s t i ca l ly  restrained p la te  behaves as shown by the diagram ODE i n  
figure 4. The c r i t i c a l  s t r e s s  a,,. i s  higher than aCrl from the dia- 
gram OAB i n  figure 3 ,  while the i n i t i a l  slope angle e of the curve DE 
i s  larger  than '4 i n  f igure 3 .  However, i n  the present case there  a re  

i n i t i a l  deflections wl. 

the diagram of uav against eaV of the e l a s t i ca l ly  res t ra ined p l a t e  
has a shape as  shown by the curve OF i n  figure 4, which i s  generally 
similar t o  the pertinent curve fo r  a simply supported p l a t e  ( r e f s .  3 
and 4 ) .  Hence, 
returning t o  figure 3 ,  with column buckling at  an  average stress uu 
the average s t r e s s  i n  p la te  BC tends t o  follow a curve CF, which 
i s  similar t o  par t  of the curve OF of f igure 4 ( f o r  the appropriate 
i n i t i a l  def lect ion)  t ha t  passes through C. Also diagram ODE from f i g -  
ure 4 i s  shown i n  figure 3. 

AG = GB = DH = HC = b/2 Hence BC and AD tend 

I n  case of i n i t i a l  deflections,  instead of ODE, 

The curve OF approximates the curve DE asymptotically. 

uav 

I n  p l a t e  AD, where during column buckling i n  the direct ion 
( f i g .  2 (a ) )  the average s t r e s s  decreases, a, w i l l  tend t o  follow the 
dashed par t  CO of curve OF downward. Similar considerations as  f o r  the  
p la tes  BC and AD apply fo r  the par ts  of the plates  AB and DC t o  the  r igh t  
and t o  the l e f t  of the l i ne  GH, respectively. 

a 

A t  point C ( f i g .  3 )  the curvature of a typical  curve OF w i l l  tend 
t o  increase w i t h  i nc reas l r i  average s t r e s s  uav ( r e f s .  3 and 4) . Hence 
the over-all  r i g i d i t y  of the plates ,  which governs column buckling and 
which i s  determined by the slope of curve OF, w i l l  be highest a t  incip- 
ien t  column buckling, where it i s  determined by the slope angle 

point C .  
t o  the  r igh t  of  l i n e  GH i n  figure 2(c),  as determined by curve CF, w i l l  
decrease more than the effect ive modulus fo r  the p l a t e  t o  the l e f t ,  as 
determined by curve CO, increases. Consequently i n  the  postbuckling 
range the ultimate s t r e s s  which the column can sustain i s  the  average 
s t r e s s  a t  incipient column buckling. 

9 at 
For with fur ther  buckling the effect ive modulus fo r  the plates  

S imi l a r  considerations apply for H-sections buckling i n  the direc- 
t i on  perpendicular t o  the web. The correctness of these considerations 
was confirmed by the experiments, described l a t e r  i n  t h i s  paper, which 
showed t h a t  a f t e r  incipient buckling the average s t r e s s  decreases mono- 
tonical ly .  
of the column i s  considered i n  a separate section of t h i s  paper. 

To emphasize t h i s  point the influence of i n i t i a l  crookedness 
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In  the theore t ica l  par t  of the paper the ultimate s t r e s s  a t  incip- 
ien t  column buckling i s  calculated, taking account of the ac tua l  shapes 
of the deflection surfaces w1 and w2. Since with incipient buckling 

called u2' and w2 ' .  Simple formulas a re  found by the method of s p l i t  
r i g id i t i e s .  
parabola, which in  the buckling stress-slenderness diagram i s  tangent t o  
the curve f o r  the ultimate s t r e s s  in  the e l a s t i c  region. 
r e su l t s  are i n  excellent agreement w i t h  the  theory. 

, 

the s t resses  o2 and the deflections w2 a re  in f in i t e ly  small they a r e  c 

Plas t ic  deformation i s  taken into account by using a Johnson 

The experimental 

The present investigation was carried out a t  Cornell University 
under the sponsorship and w i t h  the f inanc ia l  assistance of the National 
Advisory Committee fo r  Aeronautics. The theore t ica l  par t  w a s  carried 
ou t  by Professor P. P. Bijlaard and the  experimental par t  w a s  carried 
out by Professor G. P. Fisher. The project was directed by Professor 
George Winter. 

SYMBOLS 

A area of cross section and constant in equation (103) 

A,B constants i n  equations (127); A = 1.183, B = 1.844 

B = b ' / b  

C,C1,C2,C3,C4 constants 

D deflecting force in  method of s p l i t  r i g i d i t i e s  

E modulus of e l a s t i c i t y  

postbuckling modulus eq 

I moment of i ne r t i a  

L column or  p l a t e  length 

M bending moment 

N f lexura l  p l a t e  r ig id i ty ,  i n  par t icu lar  fo r  w a l l s  
of tubes 

L 

N f f lexural  r i g i d i t y  of flange o f  H-section 
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P, Q constants given by equations ( 5 6 )  and (57) for  H-sections 
and by equations (138) f o r  square tubes 

v energy o r  work 

x,y,z coordinate axes 

a half wave length of plate  buckling 

b pla te  width, i n  particular of flanges of H-sections and 
of walls of square tubes, and length of web 

b '  width.of web of H-section 

constant i n  equation (104) 

constant i n  equation (104) 

84 (40 + "B3) 

504 + yGtB5 
k =  

kf = b t f U ,  rl/n2Nf 

kl,k2,k3,k4,kg,k6 constants given by equations (129) 

P,9,91 parameters i n  equation (63) 

r radius of gyration 

t plate  thickness i n  general and w a l l  thickness of tubes 
i n  par t icular  

W plate deflection 

p la te  deflection by loca l  buckling w1 

w2 ' i n f in i t e ly  small plate deflection from second mode 
of p la te  buckling superimposed a t  incipient column 
buckling 

X, Y coordinates 
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al,+,al' ,%' coefficients defined by equations (86)  and (88) 

B r a t i o  between half wave length a and p l a t e  
width b, a/b 

B '  given by equation (43) f o r  H-section and by equa- 
t i o n  (131) for  square tubes , w ~ ~ ' /  wh 

Y constant given by equation (30 )  

6 stretching of pla te  i n  postbuckling range 

6 t  = k/"f 

E p la t e  shortening per u n i t  length 

e 

A = sr/a = s r / b  
coefficient of r e s t r a in t  given by equation (85) 

CI constant given by equation (110) 

P radius of curvature of column axis  a t  incipient 
column buckling 

U normal s t r e s s  

ucc crushing strength 

yield s t r e s s  i n  compression (0.2-percent off s e t )  
CY 

U 

I i n f in i t e ly  small when applied t o  w and u 
- 
0 uniformly dis t r ibuted 

Subscripts : 

a as ymme t r i c 

av average 
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b 

C 

cc 

c lear  

c r  

d 

E 

e 

eq 

f 

h 

i 

i n  

k 

1 

m 

0 

out 

r 

S 

U 

u l  

u l t  

UP 

W 

bending o r  f lexural  

column 

crushing 

clear  inside dimension 

c r i t i c a l  

exerted by deflecting forces 

Euler 

external, e l a s t i c  

equivalent 

flange 

exerted on length equal t o  half wave length of buckles 

internal,  i n i t i a l  

interact ion 

a t  point K ( f i g .  13(a)) 

l e f t  

maximum 

a t  c res t  of waves 

outside dimension 

r igh t  

symmetric 

ultimate, particularly i n  e l a s t i c  range 

ultimate a t  tangent point between curves f o r  uu 
and uup 

ultimate, i n  general 

ultimate in  p l a s t i c  range 

web 
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i n  X-direction 

i n  Y-direction 

a t  loca l  buckling, or  i n  postbuckling range 

a t  second mode of plate buckling superimposed a t  
incipient column buckling 

TIIEORETICAL INVESTIGATION 

Ultimate Strength of Columns with H-Shaped Cross Sections 

Survey of dis tor t ions and stress dis t r ibut ion.-  F i r s t  the modes of 
d i s tor t ion  of a cross section a re  considered i n  the postbuckling range, 
before as well as a f t e r  column buckling. This d i s tor t ion ,  which may be 
assumed t o  vary sinusoidally i n  the  X-direction ( f i g .  5(a)) ,  w i l l  involve 
def lect ing forces -taxd%/ax2 per u n i t  surface acting transversely on 
flanges and web, where 
f i n i t e  deflections i n  the postbuckling range. 
held i n  equilibrium by restraining forces caused by transverse shearing 
s t resses  i n  the component p la tes .  
include the influence of the membrane s t resses ,  they a re  proportional 
t o  the deflections.  They may be expressed i n  terms of the loca l  buckling 
stress aCrl of the cross section and of the loca l  buckling s t r e s s  aCr2 
f o r  the mode of buckling of the cross section which i s  superimposed with 
incipient  column buckling. I n  order t o  be able t o  take account more 
accurately of the form of the deflection surfaces of the plates ,  the 
def lect ing and restraining forces are  not compared d i rec t ly ,  but the 
work done by these forces i s  compared. 

ox includes the membrane s t resses  caused by 
The def lect ing forces a re  

Since these restraining forces do not .. 

This leads t o  two equations referring t o  the postbuckling range 
before and a f t e r  incipient column buckling, respectively. These two 
equations have general va l id i ty  and hence they apply fo r  square tubes 
as  well. After the variables i n  these equations have been expressed 
i n  terms of the maximum deflections and of the abscissas of the per t i -  
nent points  of the cross section, the equations lead t o  an expl ic i t  
formula fo r  the ultimate s t r e s s  i n  the e l a s t i c  range. 

An H-section of effect ive length L i s  considered ( f i g .  ? ( a ) ) .  I t s  
cross section i s  given i n  figure 5(b) .  
buckling i n  the Y- and Z-directions, f o r  the H-sections considered and 
used i n  the t e s t s  column buckling w i l l  occur i n  a direct ion perpendicular 
t o  the plane of the web. 

With equal effect ive length f o r  

L 
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A t  the  loca l  buckling s t r e s s  ucr. the cross section at the c re s t  
of the loca l  buckling waves i n  the X-direction w i l l  d i s t o r t  as shown i n  
figure 5(b).  The s t r e s s  ac,l and the half wave length a of loca l  
buckling follow from the theory of buckling of p l a t e  assemblies ( r e f s .  5 
and 6) and the  pertinent tables  ( re f .  7) and graphs ( r e f .  8) .  The loca l  
.buckling s t r e s s  may be expressed as 

where Nf i s  the f lexural  r i g i d i t y  o f  the  flanges and b and tf a re  
indicated i n  f igure 5(b) .  

With fur ther  increase of the compressive force the  deflections 
and wlw 
f lexura l  r i g i d i t y  of the column as a whole has become so small that it 
w i l l  f a i l  by column buckling. A t  t h i s  load the  s t r e s s  d i s t r ibu t ion  i n  
the flanges, j u s t  before column buckling, is  given i n  figure 5 (c ) .  The 
maximum s t r e s s  
web, which remains s t ra ight .  (From ref .  1, interact ion between column 
and loca l  buckling can be neglected.) 
(and i n  the web) the compressive stress a1 i s  l e s s  than am because 
of the superimposed membrane t ens i l e  s t resses  owing t o  the deflec- 
t ions w (and wlw). A l l  these s t resses  r e fe r  t o  the  s t resses  uX 

i n  the middle plane of the plates ,  so that they do not contain the p l a t e  
bending s t resses  caused by the deflections wlf and wlw. 

wI f  
of the cross section w i l l  increase u n t i l  a t  a cer ta in  load t h e  

om occurs a t  the l i n e  of intersect ion of flanges and 

I n  other  points of the  flanges 

With incipient column buckling in f in i t e ly  small s t resses  a2' a r e  
superimposed upon the s t resses  al in the flanges. If nosadditional 
deflections of the flanges would accompany the  column buckling, these 
extra  s t resses  a2' would show a l inear d i s t r ibu t ion  ( f i g .  5 ( e ) ) .  
Assuming column buckling i n  the direction of the arrow i n  f ig -  
ure 5(d) ,  with a radius of curvature 
s t resses  a t  the f r ee  edges of the flanges would be 

a 
p of the  column, the  extra 

Eb/p ( f i g .  5 ( e ) ) .  

However, the extra compressive s t resses  a*' i n  the  r igh t  flange 
w i l l  cause extra  deflecting forces. 
def lect ion by an in f in i t e ly  small amount 

same wave length i n  the X-direction as that  of 

These w i l l  increase the flange 
' 

w2' ( f i g .  5 ( d ) ) ,  with the 

wlf. A t  the  same time 
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the  extra  t ens i l e  s t resses  U2'  

t i o n  by an in f in i t e ly  small amount w2 ' .  Since w2' is  in f in i t e ly  small 
w i t h  respect t o  a2'  
i n  the  right and l e f t  flange, the extra deflections of both flanges 
a re  equal. Moreover, the extra  deflections w2' cause a change i n  the 

deflecting forces due t o  the or ig ina l  compressive s t resses  ul. This 

w i l l  again increase w2' 

Hence the deflections w2' caused by column buckling a re  symmetrical 

w i t h  respect to  the intersect ion 0 of flange and web ( f ig s .  5(d) and 5 ( f ) ) .  
Thus a l so  the membrane t ens i l e  s t resses  caused by the extra  deflec- 
t ions  w2' 
s t resses  caused by the extra deflections w2' of the l e f t  flange. These 
membrane s t resses  diminish the column bending s t resses  
and l e f t  flange by equal amounts, so that the remaining extra compressive 
s t resses  U2' 

s t resses  u2' i n  the  l e f t  flange, as was assumed above. 

i n  the l e f t  flange decrease i t s  deflec- . 
wlf, it i s  evident that  with equal bending s t resses  . 

w2' 

f o r  the r igh t  and l e f t  flange by equal amounts. 

of the r igh t  flange a re  equal t o  the membrane compressive 

Ey/p i n  the r i g h t  

i n  the r igh t  flange a re  equal t o  the remaining extra t ens i l e  

The extra deflection w2' of the flange, being symmetrical w i t h  

respect t o  point 0 ( f i g .  5 ( f ) ) ,  i s  prac t ica l ly  s i m i l a r  t o  the deflection 
of a flange clamped a t  one unloaded s ide and f r ee  a t  the other which 
buckles i n  pure compression. The buckling s t r e s s  of such a flange is ,  - 
from reference 9, 

where g = afb and a i s  the half wave length of buckles. I n  the 
present case t h i s  half wave length i s  the  same as  that of the  or ig ina l  
l oca l  buckles which occurred a t  the loca l  buckling stress 
equation (1). This s imi la r i ty  w i l l  be used i n  calculating the restraining 
forces caused by the extra  deflections 

acrl  from 

w2' .  

The extra deflections w2' of the flanges do not involve any rota- 
t i o n  i n  the l i ne  of intersect ion 0 of web and flanges.  Moreover, since 
with incipient column buckling the  extra  s t resses  u2' a r e  symmetrical 
with respect t o  0, there w i l l  not occur any extra s t resses  i n  the u2' 
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web, so t h a t  they do not cause extra deflecting forces there .  
extra deflecting forces w i l l  work on elements of the web owing t o  the 
curvature l / p  
umn length L .  
the deflecting forces by t h i s  curvature 
deflection of one half wave and t o  decrease that of the adjacent ones, 
so that they w i l l  not a f f ec t  the average deflections of the web buckling 
mode wlw ( f ig s .  5(b) and 5 ( d ) ) .  

However, 

of the column, with a half wave length equal t o  the col- 
But since the web has buckled i n  many small half waves, 

w i l l  tend t o  increase the l / p  

Derivation of energy equations by method of s p l i t  r i g i d i t i e s . -  To 
determine the average buckling s t ress  
of s p l i t  r i g i d i t i e s  w i l l  be used. The pr inciples  of t h i s  method were 
explained i n  e a r l i e r  papers, of which some of the e a r l i e s t  and l a t e s t  
a re  given as  references 1, 4, 10, 11, and 12. 

uav of the column the method 

With t h i s  method equations a re  established tha t  express the equi- 
librium between the deflecting and res i s t ing  actions during buckling, 
as explained i n  a generalized form i n  reference 1, pages 19 and 20. If 

the deflecting forces -to,(a%/ax*) dx dy caused by the compressive 

forces tax  dx dy acting on elements t dx dy have t o  be compared f o r  

two d i f fe ren t  modes of def lect ion f o r  which t h e i r  d i s t r ibu t ions  i n  the 
Y-direction a re  d i f fe ren t  ( i n  the  X-direction, as sketched i n  f i g .  5(a), 
a l l  modes and deflecting forces have the same sine d is t r ibu t ion) ,  not 
the def lect ing forces themselves, but t h e i r  influences on the considered 
def lect ion have t o  be compared. 

I n  reference 1 these influences, expressed by the coeff ic ients  
and 7, affected only the decrease of the column or p l a t e  buckling 
s t r e s s  by the interaction with plate  or column buckling, respectively, 
which i t s e l f  was a small f rac t ion  of the actual  buckling s t r e s s  (com- 
pare eqs. (74) and (75) of r e f .  1). Therefore these influences could 
suf f ic ien t ly  accurately be estimated by simple means. 

I n  the  present case more in t r i ca t e  modes of def lect ion occur, 
especially i n  the  case of square tubes. Moreover the  influence of the 
ac tua l  form of the d i f fe ren t  modes i s  here somewhat la rger  than i n  the  
case of reference 1. Therefore a more rigorous method w i l l  be used i n  
determining the r e l a t ive  influences of different ly  d is t r ibu ted  def lect ing 
forces; they w i l l  be determined by comparing the work done by them during 
the per t inent  deflections,  as w a s  proposed i n  reference 4. 

F i r s t ,  the  postbuckling stage of the plate-buckling process is  
considered ( f i g .  5 ( b ) ) .  A t  the c r i t i c a l  s t r e s s  Ucrl known from equa- 
t i o n  (1) flanges and web begin t o  buckle. With increased load fur ther  
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buckling occurs. “his induces membrane s t resses ,  so that the compres- 
sive s t ress  
The flange deflection wlf s i n  (xx/a) causes deflecting forces 

alf i n  the flanges w i l l  vary i n  the Y-direction ( f ig .  5 ( c ) ) .  

- 
a2 D1 = - t fu= wlf s i n  
ax 

A d i f f i cu l ty  i n  determining the work done by these deflecting forces 
during buckling seems t o  be that during t h i s  process alf changes, so 
that the deflecting forces a t  a cer ta in  point do not increase l inear ly  
w i t h  the deflection. 
observing that the resul t ing deformation of the  flange w i l l  be the same 
as i f  the deflecting forces had increased l inear ly  w i t h  the deflections 
wlf s i n  (yrx/a) and hence, a t  any point, alf had been equal t o  i t s  
final value a f t e r  the deflection wlf s i n  (,,/a) 

This i s  evident because i n  that case the resul t ing deflection and the 
in te rna l  work would be the same as i n  the ac tua l  case. Hence the t o t a l  
work during the deflection wlf s i n  (fix/.) exerted by the def lect ing 
forces, f o r  example, on a length of the r igh t  flange equal t o  the half 
wave length a of buckles, is 

This d i f f i cu l ty  may be solved, however, by 

( f ig s .  6(a) and 6(b) ) .  

=IC 2 I f  t s” 0 alfw1f2 * 
where the subscript h indicates half wave length and where C1 i s  
a constant. 

(4) 



In  a l l  cases that have t o  be considered the deflecting forces and 
deflections vary sinusoidally i n  the X-direction w i t h  the same half 
wave length a. Hence it i s  suff ic ient  t o  consider the work done on 
an element of u n i t  length i n  the X-direction at  the c res t  of the waves 
only. 
of such a s t r i p  may be denoted as Ctfulfwlf dy, where C = s2/a2 i s  

a constant. The t o t a l  work during the deflection w l f  i s  then 

From equation ( 3 )  the deflecting force exerted on an element dy 

analogous t o  equation (4) .  

The same explanation applies t o  the web, if  a l so  the work by mem- 
brane s t resses  uy i n  the Yw-direction ( f ig .  3(b)) is  considered. This 

work can be calculated by assuming a t o t a l  equivalent s t r e s s  

i n  the  X-direction, which includes the influence of these membrane 
s t resses  u In  the flange these s t resses  u a r e  prac t ica l ly  zero. 

Hence f o r  the en t i r e  cross section t h e  work of the deflecting forces i s  

( ~ 1 w )  eq 

Y’ Y 

means that the integral  has t o  be extended along the s where the  sign 

en t i r e  cross section of the column (so that, i n  considering the web, 
t i s  the thickness $ of the web, and yl is  the coordinate yw). 
I n  calculating the work vld, t he  influence of the membrane s t resses  
w a s  taken into account i n  determining the deflecting forces.. Hence the 
work Vld i s  transformed exclusively in to  bending energy of the plate ,  
that is, without any s t re tching energy. 
of postbuckling the shape of the deflection surface may be assumed t o  
remain similar t o  that a t  incipient buckling. It was shown i n  refer-  
ence 4 that, i n  the case of a compressed p l a t e  that i s  simply supported 
a t  the  unloaded edges, such an assumption leads t o  prac t ica l ly  exact 
r e su l t s .  
involved i s  determined by the same equations that apply fo r  the in f i -  
n i t e l y  small deflections occurring a t  incipient buckling. Analogous t o  
equation ( 6 ) ,  a t  incipient buckling the work done by the deflecting 

I n  the  considered i n i t i a l  stage 

Hence the required bending energy f o r  the  f i n i t e  deflections 
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forces,  and hence the bending energy required for  the deflections 
may be expressed as 

wl, 

where uCrl i s  the loca l  buckling s t r e s s  from equation (1). A s  explained 
above, t h i s  same equation obtains f o r  the f i n i t e  deflections considered 
here. Hence Vld from equation 6 should be equal t o  vlb from equa- 
t ion  (71, s o  that 

The subsequent column buckling w i l l  be considered next. A s  explained 
above, it induces extra flange deflections 
t ions.  The deflections w2' a re  symmetrical with respect t o  the plane 
of  the web and are  s i m i l a r  t o  those of a compressed flange with one 
unloaded side clamped and the other f ree ,  as i l l u s t r a t e d  i n  figure 5( f ) ,  
fo r  which the c r i t i c a l  s t r e s s  aCr2 is  given by equation ( 2 ) .  Analo- 
gpus t o  equation (7) the f lexural  energy required f o r  the deflections 
may be expressed as 

w2' and no extra  web deflec- 

w2' 

2 ( 9 )  

This integral  extends over the flanges only, since f o r  the web w2' = 0 .  

The best  way t o  explain how the work done by the deflecting forces 
during the ac tua l  deflection w2' 
be t o  show first how the t o t a l  def lect ing forces act ing on the flanges 
develop - o r  may be assumed t o  develop - with increasing c res t  deflec- 
t ions wlf and w 2 ' .  Figure 6(a) shows how the  compressive s t r e s s  

(averaged over the flange thickness) a t  a cer ta in  point of the r igh t  
flange develops. A s  stated above, during the def lect ion wlf it may 
be assumed t o  remain constant. Hence a t  the c res t  of the waves it 
develops a deflecting force which increases l i nea r ly  with wlf with 

of t he  flanges i s  calculated seems t o  
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a f ina l  value Ctfalfwlf, as indicated i n  f igures  5(d) and 6(b). 
column buckling s t resses  a2' as well as the extra  deflections w2' a r e  
proportional t o  the in f in i t e ly  small column deflections, so  that 
increases l inear ly  with w2' ( f i g .  6(a)) .  The deflections w2' w i t h  

the same half wave length a as WE cause an increase of the deflecting 
forces by the s t resses  ax of a f i n a l  amount Ctfalfw2' ( f i g .  ?(a)) ,  
increasing l inear ly  with w2' ( f i g .  6 (b ) ) .  The extra  stresses u2' 
increase the deflecting forces by an amount Ctfu2'(wlf + w2') 
and 6(b)). The pa r t  Ctfa2'wlf increases l inear ly  with w2',  while the  
par t  C t f  a2 'w2 ' 
both a2' and w2' a re  i n f in i t e ly  small, t h i s  last term may be neglected 
with respect t o  the first one. 

The 

a2' 

( f ig s .  5(d) 

increases proportionally t o  ( w2 ') ( f i g  . 6(b) ) . Since 

With deflecting forces D and deflections w the  t o t a l  work done 

D dw. Hence it is given by the hatched LW by the deflecting forces is 

area of the diagram f o r  the deflecting forces i n  figure 6(b), so that f o r  
an element of the r igh t  flange a t  the c res t  of the wave and of uni t  length 
i n  the X-direction t h i s  work is  

I n  the l e f t  flange, the extra stresses a2' ( f ig .  5(e)) a re  opposite 

t o  the s t resses  alf ( f i g .  ?(e))  and w2' i s  opposite t o  wlf ( f i g .  5(d)) ,  

so that the stresses vary with the deflection as indicated i n  figure 6( c) . 
After reaching a value Ctfulfwlf 

deflection wlf, the  deflecting force caused by the s t resses  a l f  w i l l  

j u s t  before column buckling, with a 

decrease by an amount C t  u w ' ( f igs .  5(d) and 6(d)).  The extra f If 2 
t e n s i l e  stresses a2' decrease the  deflecting force by an amount 

Ctfa2' (wlf - w2') . For similar reasons as given for  the r igh t  flange, 

Ctfalfw2' and Ctfa21wl decrease here l inear ly  with the deflection, 

while the  term Ctfa2'w2' may be neglected. Hence from figure 6(d) the  



t o t a l  work done by the deflecting forces, as given by the hatched area,  
i s  ( f ig .  5 ( 4 )  

During incipient buckling the web does not undergo extra  deflec- 
t ions w2', so t h a t  the t o t a l  work fo r  the web is  ( f i g .  5 (d) )  

c 

'ere 

s t resses  cry i n  the web. Hence, fo r  the en t i r e  section, the  t o t a l  work 
by the deflecting forces is  

(01w)eq i s  inserted instead of qw t o  take account of membrane 

where , t, and y1 have the same meaning as i n  equation ( 6 ) .  $ 
A s  stated above, the bending energy required fo r  the deflections 

and w2'  is  given by vlb and v2b from equations (7) and ( 9 ) .  It 
could be argued that i n  the present case the extra  energy required f o r  
the extra deflections w2' may d i f f e r  from V2b i n  equation (9) because 
the s t resses  which were caused by the deflections 
during the extra deflections w2'. Indeed, i n  the r igh t  flange, where 

w2' 
during the  extra deflections W 2 ' .  But i n  the  l e f t  flange w2' has a 
direct ion opposite t o  

w1 

w1 may do some work 

is  of the same sign as wl, some s t r e s s  components may do work 

wl, so that the same s t r e s s  components w i l l  do 

c 
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there an equal and opposite amount of work. 
by these s t resses  is  zero, so that indeed vd 
be equal t o  the sum of vlb and v2b from equations (7) and (9) .  This 
yields 

Hence the t o t a l  work done 
from equation (13) must 

Subtracting equation (8) from equation (14) leads t o  the following basic  
condition: 

Derivations of formulas f o r  stresses u1 and a2'.- The variables 

i n  equations (8) and (15) may be expressed i n  terms of the maximum 
deflections wh and wal ( f ig .  5(d))  and the  abscissas of the  per- 
t inent  points t o  which they re fer .  The s t r e s s  alf  i n  the flanges d i f -  
f e r s  from am a t  y = 0 because of the  stretching of the flange i n  the  

X-direction by i t s  deflection wlf. Although the flanges a re  ro ta t iona l ly  
restrained by the web, during local buckling they prac t ica l ly  do not bend 
i n  the Y-direction, as i s  substantiated by t e s t s ,  so that the  deflec- 
t i o n  wlf ( f i g .  5(b))  m y  be expressed as 

where 

Y 
Wlf = wlm : 
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Hence for a ha l f  wave length the  d i la ta t ion  i s  

a 
Wlf2 cos2 x 1 

a 

- n2 2 
If - - w  

4a 

so t h a t  the s t r e s s  ulf at any point of the  flanges ( f i g .  5( c ) )  is 

E6 
If m a 

= Q  - -  

I n  the same way the compressive s t r e s s  i n  the web is 

Both equations (19) and (20) neglect the influence of membrane s t resses  uy 
and assume that '11 does not vary i n  the  X-direction. For the  flanges the 
membrane s t resses  u a re  indeed negligible.  Moreover it w a s  shown i n  

reference 4 that fo r  a web p la t e  which i s  simply supported and held s t ra ight  
a t  the unloaded edges the above assumption leads t o  exact r e su l t s .  
it may be assumed t h a t  for  the present 'case a l so  equation (20) is suffi- 
c ient ly  accurate. 

Y 

Hence 

However, t o  calculate the  t o t a l  work, the  membrane s t resses  uy i n  

yw = fb ' /2  the web should be taken into account. A t  the  unloaded edges 
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of the web the membrane s t resses  uy vanish. According t o  reference 2 
fo r  such a case, i f  the p l a t e  i s  simply supported a t  the unloaded edges, 
i n  the postbuckling range the s t i f fness  against  fur ther  compression is 
0.41 times that before buckling, which may be expressed by the formula 

where oav is  the average compressive s t r e s s  ux, ucr is the  c r i t -  
i c a l  s t r e s s ,  cX i s  the  shortening o f  the  p l a t e  per u n i t  length, and 

= ucr/E. Since a t  the unloaded edges the p la te  does not bend, 
ex = am/E, where is  the maximum edge compressive s t r e s s  ( f i g .  7 ) .  
Insertion i n  equation (21) gives 

am 

‘av = u cr  + O.41(om - uCr) (22) 

It was shown i n  reference 4 that for membrane s t resses  
t r ibu t ion  ( f i g .  7) 

ax with a dis-  

urn = ‘om cos2 b 2. yw (23) 

t h e i r  e f fec t  upon the buckling deflections of the p la te  is  equivalent t o  
tha t  of uniformly dis t r ibuted stresses 

It m y  be assumed that equation ( 2 3 )  gives the d is t r ibu t ion  of the  mem- 
brane s t resses  urn a l s o  i n  the  present case. Moreover, l e t  t he  influence 
of a l l  membrane s t resses  urn and u be equivalent t o  t h a t  of equally ym 
d is t r ibu ted  s t resses  
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Hence, according t o  the reasoning advanced i n  reference 4, the t o t a l  
equivalent compressive s t r e s s  
c r i t i c a l  s t ress ,  or 

uX = urn - acorn must be equal t o  the 

so t h a t  

am - ('cr a =  

Observing that with the stress dis t r ibut ion from equation (23) 

a,, = 2 (um - a,,) 
equations (25) and (27 )  t h a t  

i n  f igure 7 and using equation (22), it follows from 

om = 0 . 8 4 8 ~  
*x, eq 

- 
From equation (24) the equivalent s t ress  f o r  membrane s t resses  om 
only is  0.75aOm, so that the  membrane s t resses  u may be taken into 
account, i n  calculating the t o t a l  work, by assuming equivalent membrane 
s t r e s ses  

ym 

0.848 - = YO, -- 
kxm)eq 0.750 a& 

where 

Hence i n  calculating the t o t a l  work the s t resses  i n  the web should be 
assumed as 

instead of  alw from equation (20).  
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For a column deflection i n  the  direct ion a ( f i g .  5(d) ) , with a 
radius of curvature p the bending s t resses  i n  a nondistorted section 
would be Ey/p. However, the excess flange deflections w2' ( f i g .  5(d))  
generate excess membrane s t resses  urn'. Analogous t o  equation (19) and 
considering that w2' is inf in i te ly  small, t h i s  leads t o  ac tua l  s t resses  

( f ig .  5 ( e ) )  : 

E E a2' = ; y  - 
2a 

A s  shown i n  the section en t i t l ed  "Survey of dis tor t ions and s t r e s s  dis-  
tr ibution," the column deflection does not introduce any excess s t resses  
i n  the web, so that f o r  the web a2' = 0. 

Derivation of formulas f o r  deflections.- After formulas fo r  the 
s t resses  al and a*' have been derived, the deflections wl and w2' 
have yet  t o  be expressed i n  terms o f t h e  maximum deflections 
and w-' ( f i g .  5(d)) and of the abscissas of the  pertinent points con- 
sidered. The flange deflection wlf is given by equation (17). The 
web is bent by moments 

accurately be assumed t o  bend parabolically i n  the Yw-direction. 
from figure 5(d) a t  the crest  of the waves the maximum web deflection is  

w h  

% exerted by the  flanges and may suf f ic ien t ly  

Hence 

b ' w h  
wo = - 

4b 

so  t h a t  the web deflection 

(33) 

The flange deflection w2' i s  similar t o  that of a f u l l y  clamped 
flange. Analogous t o  equation (1%) of reference 1 it w i l l  be assumed as 

- 4by3 + 6 b 2 9  
w2' = Waf (35) 

3b4 

As explained above, f o r  the web w2' = 0. 
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Energy equations.- Equations (l7), (191, (31), (32), (34),  and (35) 
express all variables of the basic equations ( 8 )  and (15) i n  terms of the 
maximum deflections w h ,  and w ~ ~ ' ,  the maximum s t r e s s  urn, the  half wave 
length a of loca l  buckling, the p l a t e  and web widths b and b ' ,  and 
the coordinates y and yw (figs.  5 ( c ) ,  5(d) ,  and 5 ( e ) ) .  Using equa- 

t ions (171, (191, (31), and (341, equation (8)  yields  

c 

2 w  ' E lm2 sb dy) + ..(urn Lb 3 dy - - - w 2  
4 

b2 4a2 b2 0 

The terms referring t o  the  four flanges and those re fer r ing  t o  the web 
may be recognized by the factors  tf and h, respectively.  After in te -  
gration the above equation leads t o  the r e s u l t  

o r  
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where 

. 
and 

. 

84(40 + StB3) 
k =  

504 + 7Gt9 

B = b'/b 

6 t  = %/tf 

A l l  terms of equation (15) vanish as f a r  as t h  

(39) 

y r e f e r  t o  the web, so 
that it i s  suff ic ient  t o  consider t h i s  equation f o r  one flange only. 
Using equations (171, (19), (321, and (351, equation (15) transforms 
into 

-- '?E wlm2 Lb 9 ( y 4  - 4by3 + 6b2$) d q  + 
4a2 b2 

--e wlm w2m' f lb y'(y4 - &by3 + 6b23)  dy - 
3b4 p 

#(y4 - 4by3 + 6b2y2> dy = 1 --- x*E wlm i;' s," 
2a 2 b  

9b 'cr2 Jb (y4 - 4by3 + 6b23) dy 

A f t e r  integration and with the a id  of equation (37) t h i s  equation resu l t s  - i n  

w '  2m 0.2254Eb/p 

W h  
(43) P I = - =  

0.l2874k (a, - ucrl)  + 0.2568(acr2 - a,) 
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Calculation of postbuckling column modulus and of ultimate strength.- 
The internal  bending moment M ,  i n  the column is prac t ica l ly  given by the  
t o t a l  bending moment i n  the flanges so that - 

Inserting equation (321, i n  which w and w a re  given by equa- 

t ions (17) and (351, and using equations (37) and (43), equation (44) 
yields 

If 2 

If the column had a constant equivalent postbuckling modulus 
internal  moment would be 

El,eq the 

By equating the right-hand members i n  equations (45) and (46) and using 
equation (43) the  equivalent postbuckling modulus i s  obtained 

i n  terms of the ult imate s t r e s s  uu, that is ,  
eq 
at  incipient column buckling, it i s  observed that 

I n  order t o  express 

the average s t r e s s  
the t o t a l  compressive force i n  a flange may be wri t ten as 

ux 

rb 
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. 
where 
buckling. Substi tuting uu from equation (19) and wlf from equa- 
t ion  (17) and using equation (37), equation (48) transforms in to  

uuf i s  the average stress i n  the flanges a t  incipient  column 

The compressive force i n  the web i s  

twb'uw = 2tw Lb'l2 5 w  dyw (50). 

Using equations (20), (34), (37), and (40), t h i s  gives the  average stress 
i n  the  web, 

The ultimate s t r e s s  uu f o r  the en t i r e  section follows from the condition 

where A i s  the t o t a l  cross section, Af i s  the cross section of one 
flange, and A, i s  the cross section of the web. With equations (49) 

and w i t h  the notation 

4' = Af/A 

s t o  the re la t ion  

(53) 
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Inserting t h i s  i n  equation (47) one obtains 

E1,eq p(Qu - ucrl)  + b c r 2  - UcrJ 

~ ( . u  - a c r l  1 + (acr2 - u c r l )  

-- - 
E 

where 

0.2&56k - 1 
P =  

(55) 

From the def ini t ion of E 1  e 7 q  it follows that the ultimate s t r e s s  

n2E1, eq uu = 

Substituting t h i s  i n  equation (55) and observing tha t  the Euler s t r e s s  

from equation (55) 
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where 

27 

C o l u m n  buckling i n  p l a s t i c  range.- Equation (60) i s  va l id  only if  
p l a s t i c  deformations do not occur anywhere i n  the postbuckling range 
before column buckling. I n  figure 8 t h e  e l a s t i c  ult imate s t r e s s  uu 
i s  sketched i n  the buckling-stress - slenderness diagram. It i s  pro- 
posed t o  define the column buckling s t ress  u i n  t he  p l a s t i c  range 
(that is ,  i n  the  case when i n  the postbuckling stage the loca l  s t r e s s  
a t  some points of the  column is  i n  the p l a s t i c  range) by a Johnson 
parabola, as given by the curve oup i n  f igure 8. Hence it i s  given 
by the formula 

UP 

. 

where ucc 
buckling and no column buckling can occur, and where 
as follows: 

i s  the crushing strength fo r  short  columns, where anly p l a t e  

s i s  determined 

It appeared that, for  a l l  sections considered and tes ted,  the  expres- 
sion i n  the second parentheses i n  equation (60)  is  prac t ica l ly  independent 
of uE and thus of L/ r .  Hence equation (60 )  and the  corresponding curve 
f o r  uu become a hyperbola 

where p, q, and q1 are parameters determined by approximating equa- 

t ion  (60) by a hyperbola. From equation (59 ) ,  
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A t  the tangent point between the curves f o r  au and aup, with coordi- 

nates L / r  = ( L / r ) l  and a = ad ( f i g .  8 ) ,  

aup = %l 

Using equations (62), ( 6 3 ) ,  and (64), one f inds from equations (65) 

(%C - PI2 
(acc - p ) 2 g  = ucc - 

4 s  +E 
aup = ucc - 

Since the actual  curve fo r  
a hyperbola, the best  way t o  d r a w  a continuous curve f o r  au and aup 
i s  first t o  calculate ad from equation (66). Then from the curve 
fo r  uu the value of (L/r) l  fo r  au = a d  can be read. This gives 

the curve f o r  the Johnson parabola as 

au according t o  equation (60) i s  not exactly 

5lp = %c - k c c  - %l) 

It may happen that the slenderness 
slenderness (L/ r ) in  i n  figure 8. T h i s  i s  i l l u s t r a t e d  i n  f igure 9. I n  

such a case the ultimate load i s  determined by acrl and by aup from 
equation (68) only, and not by the curve for  

(L / r ) l  i s  la rger  than the interact ion 

uu. 
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uU = (22,650 + 0.08460,) 

Application t o  t e s t  columns with H-section.- The formulas f o r  

aUp 
uu 

and 
al loy H-sections used i n  the tests, of which the pertinent data a re  given 
i n  tab le  1. The dimensions b and b' i n  the tab le  refer  t o  distances 
center t o  center of the plates,  as indicated i n  f igure 10. 
i n  equation (1) fo r  acrl were found from figure 2 of reference 8.  The 
c r i t i c a l  s t r e s s  
during column buckling i s  given by equation (2)  i n  which p = afb 
t o  the half wave length of loca l  buckling before column buckling. 
half wave length was determined f o r  the  "L"-series columns on page 44 of 
reference 1 and w a s  found t o  be equal t o  twice the web width, which i n  the  
present paper i s  denoted as b ' , so that afb ' = 2. The same r a t i o  a /b  
i s  found fo r  the "J"- and "K"-series columns. Since fo r  a l l  s e r i e s  
b ' f b  = 1.24, the r a t i o  
Hence from equation (2) 

were used t o  calculate the  ultimate s t r e s s  of the 75S-T6 aluminum- 

Factors kf 

uCr2 fo r  the mode of p l a t e  buckling which i s  superimposed 
re fers  
This 

p = afb i n  equation (2) i s  ( a b ' )  (b ' /b )  = 2.48. 

248,OOOa, 

(212 , 000 + 0.7920~) 
1 + p s i  

ucr2 = 1.50 - 
b2tf 

so that the r a t i o  
a = 1.5O/kfY may be calculated. The crushing strength ucc i n  tabie  1 
w a s  found from figure 18(b) of reference 13, using the average yield 
s t r e s s  u = 83,000 p s i  of the column material. Constants P and Q 

i n  equation (60) a re  functions o f  the cross-sectional dimensions only 
and may be calculated from equations (56) and (57). 

01 = ucr2/ucrl, or,  from equations (1) and (69); 

CY 

U s i n g  the values of table  1 i n  equation (60) one finds the  following 
expressions f o r  uu: For "J"-series columns 

r- 1 

L 

for  "K"-series columns 

uu = (12,150 + 0.08460E) 



and f o r  %"-series columns 

Curves for 

Equations ( T O ) ,  ( T l ) ,  and (72), i n  which the terms i n  the square 

uu are  given i n  figure 11 by the unbroken l ines .  

brackets a r e  pract ical ly  constant, m y  be writ ten suf f ic ien t ly  accurately 
as follows: 

For the "J" ser ies  

uU = (47,100 + 0.1760,) p s i  

fo r  the "K" se r ies  

bU = (26,200 + 0.1850,) p s i  

(73) 

(74) 

and fo r  the "L" ser ies  

Ou = (17,100 + 0.1790,) p s i  (75) 

so tha t ,  i n  equations (66), (67), (68), and (6&), f o r  the "J" ser ies  

p = 47,100 p s i  

ql = 0.176 

f o r  the "K" se r ies  

p = 26,200 p s i  

q1 = 0.183 
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and f o r  the "L" se r ies  

= 17,100 p s i  

Hence from equations (66), (68) ,  and (683) and tab le  1, fo r  the "J" ser ies  

oup = kO,5W - (254 x 106/oE] ps i  

= E0,500 - 2 . 4 6 ( L / r ) j  p s i  

fo r  the  "K" ser ies  

oup = b2,500 - 8.77(L/r)q Ps i  

and f o r  the "L" series 

(76) 

c r d  = 31,800 ps i  (79) 

Th i s  is  shown graphically by the unbroken curves i n  figure 11. The graph 
f o r  the "J" ser ies  has the shape sketched i n  figure 9, so that only aCrl 
and uup are  governing here. This may be understood i n  such a way that, 

although the loca l  buckling s t r e s s  
i n  the postbuckling regior p l a s t i c  deformation occurs before column 

aCrl i s  s t i l l  i n  the e l a s t i c  range, 

- buckling. 

Similar curves have been calculated by using the clear  distances - bclear  and bc lem '  of the cross sections, as indicated i n  figure 10. 

They are given by the dotted curves i n  figure ll. 
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Ultimate Strength of Tubes with Square Cross Section 

Energy equations by method of s p l i t  r i g id i t i e s . -  The cross section 
of a square tube w i l l  deform by p la te  buckling, as shown i n  figure 12(a) 
for  the c res t  of the waves. The p la te  deflections wl w i l l  cause a 
dis t r ibut ion of the compressive s t resses  
When the compressive force and the deflections 

w i l l  be reached where the tube w i l l  buckle as a column. I f  no extra p la te  
deflections would occur, incipient column buckling would cause bending 
s t resses  Ey'/p, where p is  the radius of curvature of the column deflec- 
t ion.  However, the bending s t resses  a2' ( f igs .  12(d) and 12(e) )  w i l l  

cause extra p la te  deflections as indicated i n  f igure 12(c) by 
(a f o r  asymmetrical) for  p la te  AB and by w2s1 ( s  fo r  symmetrical) for  
p la te  BC. The deflections w ~ ~ '  and w2st cause decreases of bending 
stress, as indicated i n  figures 12(d) and 12(e) .  A t  the corners, where 
~ 2 a '  - - w2s = 0, the bending s t resses  remain ?3b/(2p). The in f in i t e ly  
small extra p la te  deflections w2' occurring with incipient column 
buckling a r e  sketched separately i n  figure 1 2 ( f ) .  

al as indicated ic figure 12(b) .  

wl increase, a s i tua t ion  

w ~ ~ '  

Using exactly the same reasoning as given f o r  H-sections, one a r r ives  
uu i s  deter-  

(01) eq and ( 02 '1 eq 

again a t  the r e su l t  that the average column buckling s t r e s s  
mined by the  two equations (8) and (15). Since here i n  a l l  plates  mem- 
brane s t resses  up also a r i se ,  equivalent s t resses  

have t o  be used throughout instead of the ac tua l  s t resses  al and 02'. 
I n  the present case 
and (15) become 

a l l  w a l l  thicknesses a re  equal, so t h a t  equations (8) 

The s t resses  al and a2' and the deflections w1 and w2' a re  indi- 

cated i n  figure 12. 

i n  equation (81) . Derivation of formulas for  s t resses . -  Obviously, acr l  
i s  the plate-buckling s t r e s s  fo r  the tube. 
each other, t h i s  i s  from reference 14 

Since the webs do not r e s t r a in  
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n2N ac r l  = 4 - 
b2t 

33 

where N i s  the f lexura l  r i g id i ty  of the p la tes .  

Similarly as  f o r  H-sections, acr2 i s  the  compressive s t r e s s  
required fo r  buckling i n  the mode determined by the extra  deflections 
as sketched f o r  the  tube i n  figure 12( f ) .  Furthermore acr2 has t o  be 
calculated f o r  the  same half wave length a as that of the or ig ina l  p l a t e  
buckling as sketched i n  figure 12(a),  t h a t  is, f o r  

w2',  

a = b.  

The mode of buckling i n  figure 12(f)  i s  s i m i l a r  t o  that of a column 
with a cross section as given i n  figure 12(g), of which the narrower 
p la tes  a r e  simply supported a t  G and H. Formulas f o r  the buckling stress 
of such columns were derived i n  reference 5 .  
s t r e s s  from these formulas it was found i n  equation (106) of reference 1 
that 

Calculating the buckling 

2 N  a2 = 4.84E(t/b)2 = 5.34 - 
b2t 

i f  P Pnjqnnn's r a t i o  of 0.3 i s  assumed. However, this i s  the c r i t i c a l  
*yI" ts 

be calculated f o r  a half wave length a = b .  The buckling condition f o r  
t h i s  case i s  given by equation (49) of reference 5 

Ln " s t r e s s  fo r  the  optimum half wave length of bucKiing, w i i i l t :  ucr2 - 

where 8 i s  given by equation (48) of reference 5. I n  the present case 
the thicknesses of the  buckling plate  BC and the restraining p la tes  GB 
and HC a re  equal, so tha t ,  i n  equation (48) of reference 5, 
Hence 

h = h ' .  
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The width b '  of the rest raining p la tes  GB and HC i s  equal t o  b/2. 
Furthermore, from the equations below equation (61) i n  reference 5, i n  
the e l a s t i c  range and with the present notations 

where 

Since here t = t, 

%,2l = %,2 

Hence, using equation (85), equation ( 8 4 )  becomes 

% tanh (5 E) + a2 tan  k2 g) = a2 cot (a2 :) - a1 coth (al :) (90)  

By t r ia l  and er ror  it follows from t h i s  equation t h a t  

The same resu l t  i s  obtained by using the tab les  of reference 7, which 
a re  based on the same equations, but the above equations w i l l  also be 
used t o  find the equations f o r  w2s1 and w ' 2a 

Because of a pr int ing e r ro r  i n  reference 3 two of the primes in  the 
1 

present equation (88) were omitted. 



c 
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The variables ul, a*', wl, and w i n  equations (81) and (82) 

may be expressed i n  terms of the  maximum deflections w and w ~ '  

and the abscissas of the pertinent points t o  which they r e fe r  ( f ig .  1 2 ( c ) ) .  
I n  the same way as was found i n  equations (19) and (20) f o r  H-sections, 
the s t resses  a1  ( f ig .  12(b))  are 

2 

lm 

n2E 2 

4b2 wl a1 = am - - 

since here the half wave length a = b.  
membrane s t resses  

condition as the  web of an H-section, so  that, analogous t o  equation (31) 
and with a = b, the equivalent s t ress  (ul)es t o  be used i n  equa- 
t ions (81) and (82) i s  

As far as the  influence of  the 

ay is concerned, the p la tes  a re  here i n  the same 

where 7 = 1.13 from equation (30). Analogous t o  equation (32), f o r  
the  p la tes  AB and CD ( f ig .  12(c) ) ,  with a = b ( f i g .  12(d)) 

For the p la tes  BC and DA, y '  = b/2, so t h a t  ( f igs .  l2(c) and 12(e))  

axe concerned, the  p la tes  BC and DA uY As far as the menibrane stresses 
a r e  i n  about the same condition as in  case of the i n i t i a l  deflections 

so that, i n  determining the t o t a l  work done, they can be taken into account 
by using i n  equation (82) equivalent s t resses  

wl, 

X2E 7 - w w  I 
Eb 

1 2s = - -  
2b2 



36 NACA TN 2994 

The plates  AB and CD are  i n  a different  position. From equation (94) 
i n  the X-direction the deflection w ~ ~ '  causes extra membrane t ens i l e  
s t resses  

O'Xm L & w w  1 2a ' 
2b2 

(97) 

where w and w ' are the deflections a t  the c res t  of the waves 

(a t  x = 0 i n  f i g .  l3 (a) ) .  These s t resses  urn' a re  zero f o r  y '  = 0 
and y '  = fb/2, where w ' and w a r e  zero, respectively. From ref-  

erence 4 the deflection w l  
with incipient buckling, so that 

1 2a 

2a 1 
may be assumed t o  have the same shape as  

w1 = wLm cos - J1 x cos - I[ Y' 
b b 

and a t  x = 0 

w1 = Wh cos - J1 y' ( 9 W  b 

A t  point K ( f i g .  l3(a))  f o r  
wl = O . 7 l w h .  Denoting w ~ ~ '  a t  t h i s  point as w2&', from equation (97) 

x = 0 and y '  = b/4, from equation (98a) 

"he extra membrane s t resses  up' caused by the extra  deflec- 
t ions w ~ ~ '  have re la t ive ly  l i t t l e  influence. The equivalent membrane 
s t resses  om' may be approximated as follows. If a t  y '  = 0 and 
y' = tb/2 no displacement i n  the Y'-direction were possible, the 
increase w ' of the deflection 0 . 2 1 ~  of a s t r i p  at x = 0 with 

2ak Im 
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respect t o  the  s t ra ight  l i n e  GIB would cause a d i l a t ion  of that s t r i p ,  
which, from equation (18), i s  

2 2 

4 -  
2 

6 = l - [ T 0 2 l W h  b + w 2ak ' )  - (0.2lWb)J 

With the  same assumptions t h a t  were used i n  deriving equations (19) 
and (20) and considering that w2&' i s  in f in i t e ly  small, t h i s  leads 

t o  membrane t ens i l e  stresses a t  x = 0 and y '  > 0 of 

Since w and w ~ ~ '  vary sinusoidally i n  

f o r  y' > o ( f ig .  1 3 ( ~ ) )  
h the X-direction, i n  general 

Equal and opposite 

In  r e a l i t y  a t  
the Y '-direction. 

were held s t ra ight  

t i o n  ( 101) fo r  y ' 

n2 = 0.21 - EWhW2*' 1 + cos b x 
b* 

st resses  ' "  would occur fo r  y' < 0. 

y' = 0 and y' = fb/2 the p la te  i s  free t o  move in 
If a t  the same time the l ines  y '  = 0 and y' = fb/2 

t 1  dx wouldbecome zero, so that from equa- SLlYm 
> o  

2n 
Lm 2ak b 

2 n 
b2 

u ' '  = 0.21 - m  w cos - x  Ym 

as shown i n  figures l3(d) and 13(f). 



Actually the l i nes  y '  = 0 and y '  = kb/2 a re  not held s t ra ight ,  
u ' = 0. This -  so that a t  y '  = fb/2 and, from symmetry, at y '  = 0, 

case may be obtained from the former one by superimposing, fo r  example 
f o r  y '  > 0, s t resses  u = -u ' I  a t  y '  = 0 and y '  = b/2, wkich 

may be denoted as compressive s t resses  ( f i g .  l 3 (h ) )  

P 

Y P 

This superimposed case i s  ident ica l  t o  t h a t  i n  reference 15, page 47, 
from which it follows that a t  y '  = b/4 

(104) j c  cosh j c  + sinh j c  2lt uyl'f = 2 A  cos - x 
b sinh 2 jc  + 2jc  

where j = 2lt/b and c = b/4, so that a t  y '  = b/4 ( f ig .  13(h))  

(105) 0~1' '  = 0.8% COS - 21t x 
b 

By superimposing these s t resses  upon the  t e n s i l e  s t resses  aym" the  
actual  membrane s t resses  u ' a re  obtained, as shown i n  f igures  l3 (e )  P 
and l3 (g ) .  Hence a t  point K, f o r  x = 0' and y '  = b/4, 

so t h a t  from equation (99) 
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, - Since w2' i s  in f in i t e ly  small with respect t o  wl, from equation (98) 

the deflecting forces -tam1 &%,/ax2 and -tap1 a%l/(ay1)2, caused by 

membrane s t resses  a,' and up', respectively, a r e  equal t o  tam1 - w 
. 

I t:) 
l and tap'($)wl, respectively. Hence membrane stresses up1 a r e  equi- 

valent t o  membrane s t resses  om' 
equal deflecting forces.  

of the same magnitude, since they cause 

From equation ( 9 7 ) ,  am1 does not vary i n  the  XI-direction. I n  
the Y1-direction it varies proportionally t o  

s t resses  (T vary a s  shown i n  figures l3 (e )  and l3 (g ) .  About similar 

d is t r ibu t ions  of a ' and a ' as occur here i n  the  area 

b/2 > x > -b/2, 
of a compressed p la te  that i s  simply supported and free t o  move later- 
a l l y  a t  the unloaded edges, such as the web of H-sections and the  p la tes  
of square tubes. For that case it was found i n  equation (29) that the  
influence of the membrane s t resses  u 
multiplying the membrane s t resses  by 1.13, so that the  influence 
of the s t resses  am was  0.13 times that of the s t resses  am. Also 

i n  t h i s  case from equation (98) the deflecting forces -tuxm a%f1/ax2 
and -toym d"w,/d$ caused by equal s t resses  am and CY 

fo r  example, from reference 4. The s t resses  a i n  case the edges are 
not held s t ra ight  a re  found by superposition of loads 
done i n  equation (103) i n  the present case. 
a r e  calculated from equation (104) where now j = 2~r/b and c = b/2. 
This leads fo r  the middle of the square buckle t o  a membrane s t r e s s  

The membrane 

ym 

2r.m Ym 
b/2 > y '  > 0, prevail  i n  the area of a square buckle 

could be taken in to  account by 
c P 

a,, 

a r e  equal. Ym 
I n  case the unloaded edges are held s t ra ight  the s t resses  follow, 

Ym 
aYl1' 

The superimposed s t resses  
as was 

Since i n  t h i s  case the influence of t h e  membrane s t resses  
0.13 times that of the membrane 
from equation (lo"), the  influence o f  the s t resses  
(0.089/0.325)0.13 = 0.035 t i m e s  that  of the membrane s t resses  

ap i s  
I stresses a,, i n  the present case, .. 

am1 w i l l  be 
am'.  . 
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Hence they may be taken into account by using i n  equations (81) and (82) 
equivalent stresses * I  

II2E 
- p - - w w  ' E 

1 2a 2b2 

instead of u2a' from equation (94).  Consequently 

Derivation of formulas f o r  deflections.- Final ly  the sup.erimposed 
deflections w2s' and w ~ ~ *  have t o  be expressed in terms of the maxi- 

mum deflection w ' ( f ig .  12 (c ) ) .  The form of the deflection w2' 

may suff ic ient ly  accurately be assumed t o  be similar t o  t h a t  i n  which 
a column with cross section GBCH, as given i n  figure 12(g),  buckles. 
I n  reference 5 the deflections w2s ' and w ~ ~ '  a r e  given by equa- 
t ions (40) and (44) , respectively, while, as pointed out on page 58 of 
reference 5 ,  f o r  the present case i n  equation (40) 
equation (44) 

2m 

C2 = C 4  = 0 and i n  

~ 1 '  = c3 '  = 0, so that 

w2s 

w~~~ = (C2'  sinh al 'y '  + C i  s i n  012'~') cos - II x 
a 

c1 = - 
cosh (5 E) c3 
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so that, since here a = b, 

cash Clly COS x (113) 

2s cosh (% $> l b  
From equations (%), (87), and (91) of the present paper 

% = 1.844 E 

A 5 = 1.183 

Inser t ing these in  equation (113) results i n  

w2s b b " >  b 
x 1.183 - y + 0.03116 cosh 1.844 - y cos 5 x (115) 

A t  

so t h a t  

y = 0, from equation (115), wZsf = 1 . 0 3 1 1 6 ~ ~  = whl (fig. 12(c) ) ,  
c3 = 0.96978wa', and from equation (113) 

A 

b " >  b 
A 

= 0.g6978wa1 1.183 - y + 0.03116 cosh 1.844 - y COS - x w2s b 

From equation (112) the condition that w = 0 at  y '  = b/2 leads 
t o  the re la t ion  
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From equation (89) a 1,2 - - %,2' so that, from equation (112), with 

l a = b, 

w '  = C4'  2a 
fi 
b 

cos - x 

or ,  from equations (114), 

w = C 4 I  s i n  1.183 - II y '  - 0.10583 s inh 1.844 E y') cos - It x 
2a ( b b b 

A t  B ( f ig .  12(c) )  continuity requires that 

- ( ~ 2 a ' l ~ y ' ) y l = b / 2  = - ( h * s  I/ dy,b/2 
Using equations (116) and (118) t h i s  gives 

C 4 '  = 0.28145Wa' 

SO that from equation (118) 

n 
2a b b b 
w = 0 . 2 8 1 4 5 ~ ~ '  1.183 5 y '  - 0.10583 sinh 1.844 2 y') cos - x 

( 121) 
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Solving of energy equations. - A l l  variables i n  equations (81) 
and (82) have now been expressed i n  terms of the maximum deflections 
and wal 
For reasons of symmetry ( f i g .  12(a)) i n  equation (81) it i s  suf f ic ien t  
t o  integrate over one-half w a l l  only, so that f o r  square tubes equa- 
t i on  (81) becomes 

wh 
( f i g .  12(c))  and of the abscissas of the pertinent points. 

The deflections w2' a r e  symmetrical with respect t o  the Z-axis 
( f ig .  12 (c ) ) .  Furthermore, fo r  negative values of y '  the  values of 
a*' and w2' a r e  both equal and opposite t o  those f o r  posi t ive values 
of y ' ,  so that a l l  terms i n  equation (82) are  symmetrical with respect 
t o  the Z'-axis ( f ig .  1 2 ( c ) ) .  
t o  integrate over one-half w a l l  AB and one-half wall BC only, by which 
equation (82) becomes 

Hence i n  equation (82) it i s  suff ic ient  

From equation (122), using equations (93) and (9&), 
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I from which 

a2E 2 16 
w l m  = -(bm 37 - Ucrl) 

or 

wlm - --(urn - -"P n 37E 

dy = 0.94047(~h')~t'~ cos2 A ; y ay + 

O.OOOg709 Lhl2 cosh2 B E y dy + 

A A cos A y cosh 6 
bI2 

0.06232 



. 
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n n COS - y COS A - y dy + 
b b 

Sgbl2 w1w2s dy = 0 . 9 6 9 7 8 ~ g ~ ' (  ./Ip" 
45 

2( cos2 n y cos2 A - y dy + 
0 b b = 0*9404wlm w2111 

Jbl2 cos2 y cosh2 B 5 y ay + 
b b 

0 0009709 
0 

. 
b 0.06232 s,"" 

W ~ W ~ ~ ' ~ '  dy' = 0.28l45Wl, (~a ' )~  y' cos n y' sin A y' dy' - c c 
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x x 

b b 
cos2 - y '  sin2 A - y '  dy' + b P  1 0 

v12 (w2a')2 dy ' = 0 .079214wh2 pa') 

cos2 x y ' s i n h 2  B y '  dy'  - 
0.0112 lb/2 b b 

(127f) 

where A = 1.183 and B = 1.8G4. After evaluating the integrals 

w w  ' d y = 2 k w  w 'b 
Jb/2 1 2s 21m2m 

Jbi2 T~:(W~;)~ dy = k 3 w Im '(w 2m ' ) 2 b  
0 

lb'2(~2a')2 dy' = k4(w2m')2 b 

. 
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i n  'which 

. kl = 0.22910 

% = 0.11938 

k3 = 0.17794 

k& = 0.00753 

k5 = 0.007% 

k6 = 0.00323 

Inser t ion of  equations (128) i n  equation (127) yields 

47 

U s i n g  equation (125) th i s  results i n  

Calculation of postbuckling column modulus and of ultimate strength.- 
The t o t a l ' i n t e r n a l  moment a t  incipient column buckling i s  
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U s i n g  equations (94) and (95) t h i s  becomes - 

and using equations (1251, (1281, and (131) 

If the column had a constant equivalent postbuckling rnodulus 
El,eq 

the in te rna l  moment would be 

From equations (134) and (135) and using equations (3O), (110), (129), 
and (131) 

The relat’on between the  edge s t r e s s  om and the average s t r e s s  (lay 

i s  given by equation (22), which applies fo r  the webs of the tubes as 
well  and where now 

stress uu, it may be writ ten as 
Since now (J i s  the  ultimate c r l  - av ucr = a 
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. Inserting t h i s  i n  equation (136) gives 

analogous t o  the previous equation ( 5 5 ) ,  where now 

P = 2.66 1 
Q = 5.01 1 

Hence, similarly t o  the case of  H-sections, the ultimate s t r e s s  i s  given 
by equation (60) : 

(60 )  

where P and Q a re  given by equations (138) and 

The c r i t i c a l  s t resses  ucrl and acr2 a re  given by equations (83) 
and (91) , so that 

a = 1.4375 (139) 
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Hence 

uU = (0.4560~~1 + 0.2650,)1 + i.-({] 4 . 5 7 0 ~ ~ ~  + 2.660, (140) 

Column buckling in plastic range.- For tubes as for H-sections 
equation (140) may be written approximately in the form of equation (631, 
so that for column buckling in the plastic range equations (66), (67), 
(68) , and ( 6 8 4  apply. 

Application to test columns with square-tube section.- The dimensions 
of the 61~-~6 aluminum columns (fig. 14) used in the experiments were 
for the "D" series bout = 2.5 inches and t = 0.04'6 inch and for the 
"E" series bout = 3 inches and t = 0.044 inch. Hence the center-to- 
center distances b 
respectively. Thus from equation (83) for "D" and "E" series 
acrl = 13,600 and 8,560 psi, respectively, so that from equation (140) 
for the 'ID" series columns 

of the webs are 2.454 inches and 2.956 inches, 

uU = (6,200 + 0.265uE)[r + psi (141) 
62,200 + 2.660~) 

and for the "E" series columns 

cru = (3,900 + 0.2650,) 1 + i-4 psi (142) 
39,200 + 2.660, 

or, approximately, for the "D" series 

Qu = (8,050 + 0.3450,) psi 

and for the "E" series 

uu = (5,070 + 0.7450,) psi 

(143) 
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Hence i n  equations (661, (67), and (68), f o r  the "D" ser ies  
and q = 0.345 and for  the "E" series p = 5,070 p s i  and ql = 0.345: 

p = 8,050 p s i  

1 

The crushing strength oCc was found from f igure 18(d) of re fer -  

i s  22,600 and 
Hence from equations (66) and (68), for  the 

ence 13, using f o r  the "D" and "E" series the averaged yield s t resses  
of 43,500 and 39,500 psi ,  respectively, from which 
18,600 psi ,  respectively. 

occ 

11 If D ser ies  

uul = 15,320 p s i  

uUP = k2,600 - 1 . 4 5 ( L / r ) q  p s i  

and f o r  the "E" se r ies  

ad = 11,830 p s i  (147) 

auP = k8,600 - 1.24(L/r)q p s i  (148) 

Curves for  uu and uup for  the "D" and "E" se r ies  a re  given i n  f i g -  
ure 15 as functions of L/r. 

If instead of center distances the clear  distances between the p la tes  
are considered as the width b of the plates ,  that i s  fo r  the "D" and 
"E" s e r i e s  

dotted curves i n  figure 15 apply. 

b = bCleu = 2.408 inches and 2.912 inches, respectively, the 

Effect of Crookedness of Column on Load-Deflection Curve 

I n  the postbuckling range a simply supported and i n i t i a l l y  s t ra ight  
column w i l l  buckle i n  a half sine wave under a load Au,, where from 
equation (58) 
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Here t h e  postbuckling modulus El ,eq i s  given by equation ( 5 5 ) .  
Since a t  incipient buckling the external moment 

fo r  any cross section is  equal t o  the in te rna l  moment 
moment is likewise 

M, E Aauw ( f ig .  16(a)) 
M i ,  the  in te rna l  

M i  = Aauw (149) 

A column w i t h  i n i t i a l  deflections wi i s  considered next 
( f ig .  16(b)). Under a load Aa, an excess e l a s t i c  def lect ion we w i l l  
occur. From equation (149) under a load Aa, an e l a s t i c  def lect ion 

according t o  a sine wave causes in te rna l  moments AUuw, where uu i s  
given by equation ( 5 8 ) .  Assuming that wi and we in figure 16(b) 

also vary sinusoidally, the deflection we would cause in te rna l  
moments if the postbuckling modulus would be the same f o r  
the i n i t i a l l y  s t ra ight  column. However, since the average s t r e s s  aav 
is here smaller than uu, the postbuckling modulus El,eq is now found 

by replacing au by Uav i n  equation ( 5 5 ) .  Thus, from equation ( 5 5 )  

= Acruwe 

Hence the  internal moment is ( f ig .  16(b)) 

M i  = AU u e  w = AaU(w - ( 151) 

where 
equation (150). 

cru is given by equation ( 5 8 )  i n  which El , eq  i s  determined by 
The external moment is  

M, = Au,,,w 

. 
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Since M, = Mi, from equations (151) and (152) 

a,,w = " u p  - V i )  

o r  

53 

where uav is  the  average stress i n  the column and au i s  given by 
equations (58) and (150). 

For example, consider a column w i t h  a s uare tube section of the 
E se r ies ,  where, from equations (138) and ? 1391, P = 2.66, Q = 5.01r 

aCrl = 8,560 ps i ,  

11 11 

a d  a =  ucr2/acrl = 1.4375, w h i l e  from equation (83) 
so  that from equation (130) 

"his equation applies i f  the average s t r e s s s  uav 
p l a t e  buckling s t r e s s  acrl. Below acrl the buckling modulus t o  be 
inserted i n  equation (58) is  simply El e = E. This assumes that the 

.eccentr ic i ty  is  so smll t h a t  it does not influence the average stress 
a t  which the plates  begin to  buckle. 
r a t i o  
given i n  table 2 and figure 17. 

i s  above the c r i t i c a l  

, q  

For a column w i t h  a slenderness 
L / r  = 75, equations (58), ( l 5 O ) ,  and (153) lead t o  the results 

It i s  seen from table  2 that above the c r i t i c a l  p la te  buckling 
s t r e s s  ucrl the deflection increases rapidly, owing t o  the sudden 
decrease of uu and (I uav. .I 

Load-deflection diagrams like t h a t  of'  f igure 17 appeared also i n  
the  t e s t s .  A t  f i rs t  sight such a diagram could be mistaken f o r  that of 
an i n i t i a l l y  s t ra ight  column, of which the resistance increases w i t h  
increasing deflection. This would be i n  contradiction w i t h  the conten- 
t i o n  t h a t  the ultimate resistance of  an i n i t i a l l y  s t ra ight  column i s  



34 NACA TM 2994 

attained a t  incipient column buckling, as was explained i n  the intro- 
duction. 
due t o  an in i tSa l  column deflection which, however, below the c r i t i c a l  
p l a t e  buckling s t r e s s  ucrl can hardly be detected. 

It i s  clear  from the above that actually such a diagram i s  

Theoretical Results 

For slenderness r a t io s  larger  than (L / r )  in ( f i g .  8), where the 
column buckling strength, according t o  Euler or Shanley, i s  lower than 
the c r i t i c a l  p la te  buckling s t r e s s  
determined by t h i s  unreduced column buckling strength. 

acrl, the  ultimate strength is  

For slenderness r a t io s  between (L / r ) l  and (L/r)in ( f i g .  8), 
where plate  buckling is  governing, and where a t  a l l ' po in t s  the s t resses  
remain i n  the e l a s t i c  domain, the ultimate strength is  given by 
from equation ( 6 0 ) .  
ucrl, OE, P, Q, and a re  given by equations (11, (59), (56), (571, 
and (61). 
where aCrl and uE a re  given by equations (83) and (59) . 

uu 
In par t icular  f o r  H-sections, i n  equation (60) 

For square tubes equation (60) reduces t o  equation (140), 

For slenderness ra t ios  smaller than 

t ions occur, the ultimate strength i s  given by 
t i o n  (68a) .  "his is  a Johnson parabola, with i t s  apex a t  the crushing 
strength ucc of the section and tangent t o  the curve f o r  uu a t  the 
slenderness (L/ r ) l .  

(L/r)l ,  where p l a s t i c  deforma- 

uup, determined by equa- - 

I f  the c r i t i c a l  p la te  buckling s t r e s s  i s  near the proportional lFmit, 
(L / r ) l  may be larger than (L/r)in, i n  which case the ultimate strength 

i s  determined by uE, ucrl, and u as i s  sketched in figure 9 and as 
i s  the case f o r  se r ies  "J" of the H-sections, as shown by the unbroken 
l ines  i n  figure 11. If the crushing strength uCc is  equal t o  the 
c r i t i c a l  plate  buckling s t r e s s  ucrl the ultimate strength is  deter-  

mined by "E and acrl = u alone, as i s  the case f o r  se r ies  "J" of 

the H-sections ( f ig .  11) i f  the p l a t e  widths a re  assumed t o  be equal t o  
the clear  distances. 

UP ' 

cc 

The method fo r  determining the ultimate strength as used till now 
i n  a i r c r a f t  design ( r e f .  16) and i n  light-gage s t e e l  s t ructures  
and 18) i s  t o  draw a Johnson parabola tangent t o  the  curve fo r  the Euler 
column buckling s t ress  uE w i t h  i t s  apex a t  the crushing strength Occ. 

( re fs .  17 
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A s  follows from the present theory, which i s  i n  excellent agreement with 
the t e s t  r e su l t s  given i n  the experimental par t  of t h i s  paper, t h i s  
method can be considerably improved by interposing the  curve fo r  
as given by equation ( 6 0 ) .  

uu, 

Curves f o r  ultimate strength against slenderness r a t i o  of the par- 
t i c u l a r  H-sections and square tubes used i n  the t e s t s  a r e  given i n  fig- 
ures 11 and 15, respectively. 
experimental investigation. 

These curves a re  confirmed closely by 

EXPERIMENTAL INVESTIGATION 

Description o f  Specimens 

The specimens used for  the experimental program were as follows: 

(a)  H-sections, extruded, of 75S-T6 aluminum a l loy  with the nominal 
dimensions shown i n  the order: Depth, flange width, p la te  thickness. 

7 13 1 
8 16 8 

1- by 2- inches by - inch, designated "J" 

1 13 1 
2 16 8 
2- by + inches by - inch, designated "K" 

1 
8 8 

3 by @ inches by - inch, designated "L" 

A l l  H-sections had the same and constant nominal thickness f o r  web and 
flange plates .  

(b) Square tubes, drawn, of 61s-~6 aluminum a l loy  with the nominal 
dimens ions shown . 

2 by 2 inches by 0.063 inch, designated "B" 

1 1 
2 2 

2- by 2- inches by 0.047 inch, designated "D" 

3 by 3 inches by 0.047 inch, designated "E" 

A l l  tubes were special  d r a w i n g s  o f  the Aluminum Company af America with 
square corners and s l igh t  thickening o f  the w a l l s  on the inside near the 
corners. 

Deviations from f la tness ,  straightness, and squareness were well 
within to le rab le  l i m i t s  with one exception. The ser ies  "E" square tubes 



had component p la tes  bowed outward an amount approximately equal t o  one- 
half the p la te  thickness. The consequences of t h i s  i n i t i a l  curvature 
a re  explained i n  a following section. 

Compressive s t ress -s t ra in  t e s t s  for the H-sections were performed 
on coupon specimens by, and data therefrom supplied through the courtesy 
of,  the Aluminum Company of America. Each of the s t ress -s t ra in  curves 
given i n  figure 18 is a weighted average of s t ress -s t ra in  curves fo r  
coupons taken from edge-of-flange, center-of-flange, and web locations 
and as such represents t he  composite s t ress-s t ra in  curve fo r  the whole 
H-section. 

Compressive s t ress-s t ra in  character is t ics  f o r  the square tubes, as 
shown i n  figure 19, are  from t e s t s  performed on complete sections with 
the walls supported t o  prevent premature loca l  buckling. The detai led 
procedure f o r  these t e s t s  was reported i n  reference 1. 

Lengths of column specimens were selected t o  cover suf f ic ien t ly  the  

r a t i o  w a s  determined by the shortest  length possible t o  t e s t  
range fo r  which postbuckling strength i s  important. The lower l i m i t  
of L/r 
without end ef fec ts  and the upper l i m i t ,  by the interact ion length, 
except f o r  a few specimens i n  the N e r  range f o r  the purpose of checking 
t e s t  technique. 
given i n  tables  3 and 4. 

The geometric properties of a l l  specimens tes ted  a re  

Instrumentation and Test Procedure , 

The instrumentation fo r  measurement of loca l  and column buckling 
and the knife-edge end supports have been described i n  d e t a i l  i n  ref-  
erence 1 and were used f o r  t h i s  ser ies  of tests with only minor revisions 
required fo r  the H-sections. 

The t e s t  procedure was likewise identical  t o  that described i n  re f -  
erence 1. The general t e s t  setup is  shown i n  f igures  20 and 21. 

Evaluation and Comparison of Experimental Results 

The r e su l t s  of the experimental investigation a r e  exhibited i n  three 
forms: 
values, (2) column-deflection curves, and (3) buckle-depth var ia t ion.  
Each of these w i l l  be discussed i n  some de ta i l .  

(1) Ultimate and c r i t i c a l  plate  s t resses  compared with theoret ical  

The comparisons of the experimental values with the theoret ical  
values a r e  presented i n  tables  5 and 6 and i n  figures 22 t o  27. 
t i c u l a r  note should be given t o  the l a s t  three columns of these tables,  

Par- 



8H 
NACA TN 29% 57 

two of which indicate deviation of experimental from theoret ical  values, 
and the th i rd  of which gives some indication of the postbuckling strength. 

The postbuckling strength is markedly i l l u s t r a t e d  i n  the f igures .  

The parabolic branch for the  
The double-branched curve f o r  theoretical  ultimate s t r e s s  i s  the same 
as  that described generally i n  figure 8. 
p l a s t i c  region par t ly  depends f o r  i t s  location upon empirical values of 
the crushing strength 

avoid buckling. 
the values were taken i n  t h i s  instance from curves recently recommended 
i n  reference 13. 

oCc of short columns tes ted  with f l a t  ends t o  

Such t e s t s  were not performed f o r  th i s  program, but 

Experimental c r i t i c a l  p la te  buckling s t r e s s  w a s  evaluated by means 
of the top-of-knee method as given i n  reference 3. Theoretical c r i t i c a l  
p l a t e  s t resses  were computed f o r  a plate width measured from the centers 
of adjoining p la tes .  A s  the width-to-thickness r a t i o  of the p la te  
decreases, the boundary e f fec t  o f  t h e  p la te  junction apparently becomes 
more pronounced, such that theoretical  values of c r i t i c a l  p l a t e  s t r e s s  
based on the c lear  p la te  width more nearly check the experimental values. 
A s  a prac t ica l  design matter, t h i s  is  not important, since the midwall 
values should always be conservative and appear t o  be so from the t e s t  
r e su l t s .  

Figure 22 fo r  the ser ies  11 J 11 H-sections shows experimental values 
of ultimate s t r e s s  which l i e  between the theore t ica l  values based on 
midwall p la te  width and clear p l a t e  width, respectively.  
basis ,  the crushing strength oCc i s  ident ica l  t o  the c r i t i c a l  p la te  
s t r e s s .  
t h i s  series had the  smallest b / t  ra t io  of the H-sections tes ted  and 
therefore the la rges t  percentage difference between c lear  and midwall 
dimensions. The parabolic branch of the ultimate-stress curve based 
on midwall p la te  width i s  defined by equation (76); no e l a s t i c  branch 
occurs f o r  t h i s  case. 

On the l a t t e r  

Stresses based on the clear p la te  width a re  presented since 

(See also f igs .  9 and 11.) 

Figure 23 f o r  the ser ies  "K" H-sections shows an ultimate-stress 
curve as defined by equations (71) and (78).  

Figure 24 for the  ser ies  "L" H-sections has an ultimate-stress 
curve as defined by equations (72) and (80) . 

Figure 25 fo r  se r ies  "B" square tubes shows no postbuckling strength. 
When the  c r i t i c a l  p l a t e  s t r e s s  occurs i n  the p l a s t i c  range, p l a t e  buckling 
i s  immediately followed by complete collapse of the column. 
consequence, it was not possible t o  measure experimental values of 
c r i t i c a l  p la te  s t r e s s  by the top-of-knee method. 

A s  a d i r ec t  
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Figure 26 for  se r ies  "D" square tubes shows a theoret ical  ultimate- 
s t r e s s  curve as given by equation (141) fo r  the e l a s t i c  branch and equa- 
t i on  (146) fo r  the p l a s t i c  branch. (See also f i g .  l?.) 

Figure 27 for  se r ies  "E" square tubes has a theore t ica l  ultimate- 
s t r e s s  curve as given by equations (142) and (148). 
that the experimental values of c r i t i c a l  p la te  s t r e s s  a re  considerably 
higher than the theoret ical  values. A s  indicated before, the specimens 
i n  ser ies  "E" were the only ones which showed s ignif icant  deviation 
from f la tness  of plates .  Measurements showed the i n i t i a l  p la te  deflec- 
t i on  t o  be 0.018 inch on the average. 
c r i t i c a l  plate  s t r e s s  a re  l i ke ly  the result of t h i s  i n i t i a l  p l a t e  curva- 
t u re  may be demonstrated a s  follows: From reference 19, where R i s  
the radius of curvature 

It w i l l  be noted 

That the elevated values of the 

t = 0.3 - 
(')cylinder R 

and f o r  a s t i f fened curved p la te  ( r e f .  16) 

where (%) = '2 f )2  = J62(;)2 fo r  the corresponding f l a t  

p la te .  
E = 1 0 . 6 7 ~  10 6 psi ,  b = 2.956 inches, and a center- 
l i n e  deviation from flatness of 0.018 inch from which m y  be derived a 
radius of curvature 
for  the curved element i s  ucr = 9,100 ps i ,  whereas f o r  the f la t  p l a t e  
crcr = 8,360 ps i .  
of curvature w i l l  be seen, by reference t o  f igure 27, t o  be the same 
as that measured experimentally. 

f l a t  3 0  - v ) *  
For a curved element of the square tube under consideration with 

t = 0.044 inch, 

R = 63.4 inches, one f inds tha t  the  c r i t i c a l  s t r e s s  

The order of increase in  t h i s  stress due t o  the e f fec t  

Column-deflection curves, presented in  figures 28 t o  32, show varia- 
t i on  of column-center deflection with load, and have been taken well 
beyond the ultimate load and t o  the point of complete collapse or nearly 
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. so. 
cally.  
c lear ly  indicating the effect  of i n i t i a l  imperfections. 

The general character of these curves has been developed theoret i -  
It i s  represented by equation (153) and shown i n  figure 17, 

Buckle-depth var ia t ion has been p lo t ted  i n  figures 33 and 34 f o r  
the two larger  H-sections and in  figure 35 as typica l  of the square 
tubes. It i s  clear ly  evident from the  former that the loca l  deflection 
curve i s  roughly parabolic i n  shape and therefore i n  qual i ta t ive agree- 
ment with theory. 

CONCLUDING RENARKS 

It i s  well-known that very short columns f o r  which column buckling 
does not occur can show defini te  postbuckling strength, t h a t  is, excess 
strength beyond that indicated by the  c r i t i c a l  p la te  buckling s t ress .  
The ultimate s t r e s s  can exceed appreciably the p la te  c r i t i c a l  stress, 
especially if the lat ter i s  well within the e l a s t i c  range. 

This postbuckling strength decreases with increasing slenderness 
r a t i o  L / r  because column buckling becomes the governing influence 
except fo r  extremely small slenderness r a t io s .  It becomes zero a t  
t h a t  L / r  
buckling s t r e s s .  
have mostly consisted i n  using a Johnson parabola tangent t o  the N e r  
column c1-e with apex a t  the l e c a l  crushing strength and 

a t  which the p la te  buckling s t r e s s  is  equal t o  the column 
Approximate methods of accounting f o r  this e f fec t  

L / r  = 0. 

I n  the present investigation, general energy equations a re  derived 

Specific expressions 
from which the ultimate strength i n  the postbuckling range can be cal- 
culated fo r  columns of any shape and slenderness. 
a r e  derived f o r  columns with H- and square-box sections and numerous 
tests h v e  been made on columns of these two shapes. 
reported herein, show consistent agreement with the developed theory. 
The reported results of measurements of  p la te  and of column deflections 
indicate the magnitude of the deformations which occur before as  well 
as a f t e r  the ultimate load. 

The results, 

Cornel1 University, 
Ithaca, N.  Y. ,  May 1, 1952. 
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TABLE 1.- DmA FOR 75s -~6  ALUMINUM-ALLOY H-SECTIONS 

- 
8 

3 
8 

Series in, I b: 
.129 .I22 10.43 

.I24 .126 10.41 

,727 

.760 

I I 

31,500 

20,500 

2.07 

1.98 

I--- 

32,500 .792 4.68 

46,600 .776 4.60 

---I--- 

1 
1 

.882 
69 

.64 

.629 

0.741 

18,800 
18,800 
15,440 
12 , 970 
12 , 000 

' 11,800 

58, ooo 

1 

TABLE 2.- STRESSES FOR SQUARE COLUMNS 

9,000 
10,000 
11,000 
11,300 

a 
'crl 

*u/'av 

4.4 
2.2 
1.72 
1.30 
1.09 
1.043 

1.29 
1.83 
2.39 
4.36 

12.1 
24.3 
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TABU 5.- TEST RECORD, H-SECTIONS 

The ore t i c  a1  Ratio, experimental 
t o  theore t ica l  

Expe r h n t  a1 De signation 
- 

L 
r 

25 
30 
35 
40.8 
42.5 
42.5 
50 

- 
II 

'cr 

uc r 

0 979 
983 
971 

- 

----- 
----- 
-e--- 

----- 
I.. 050 
1.019 
1.013 
1.019 
1.007 
1.019 
----- 

%l t 
uc r 
- 

1 079 
1.052 
1.021 

972 

----- 
----- 

1 9 5  
1.510 
1 9  352 
1.243 
1.147 
1.072 
1.009 

%lt 
%lt 

1.060 
1.045 
1.020 

970 
952 

.968 
1.001 

- Ocr, 
Ps i  

58,000 
58,000 
58, ooo 
58,000 
58,000 
58, ooo 
58,000 

31, 500 
31,500 
31,500 
31,500 
31,500 
31,500 
31,700 

20,500 
20,500 
20,500 
20,500 
20,500 
20,500 
20,500 
20,500 
20,500 

Column 

ss-1 
ES-1 
s-1 
1-1 
L-1 
L-2 
E-1 

Piece 

62,500 
61, ooo 
59,200 
56,300 
54,850 
55,200 
41,750 

25 
30 
35 
40 
45 
50 
55.9 

47,000 
44,650 
41,800 
38,500 
35,750 
33,750 
z1 05n 
2 ,//" 

1.061 
1.065 
1.018 
1.018 
1.011 
1.001 

997 

49,900 
47,600 
42,600 
39,200 
36,150 
33,800 
31,800 

41,300 

28,800 
26,200 

20,650 
21,600 
20,350 
15,600 

32,400 

23,800 

ss-1 
ES-1 
s-1 

MS-1 
M- 1 

ML-1 
1-1 

ss-1 
ES-1 

R - 1  
M-1 
s-1 

ML-1 
ML-2 
1-1 
E-1 

25 
35 
40 
44.9 
55 
62 
62 
69.1 
80 

39,250 
32,200 
29,050 
26,500 

21,95c 
21,950 
20,75c 

b16,080 

23,400 

20,750 
21,550 
20,700 
19,650 
20,950 
19,650 
20,150 ------ 
e----- 

1.052 
1.005 

.981 

.988 
1.018 

9 985 
.982 
9 972 

.942 

1.011 
1.050 
1.010 

959 
1.021 
' 959 
983 ----- 

----- 

2.018 
1.580 

1.278 
1.160 
1.008 
1 053 

9 993 

1.405 

----- 

%ate c r i t i c a l  s t r e s s  as determined by NACA top-of-knee methoc 

bEuler stress. 
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TABU 6.- TEST RECORD, SQUARE TUBES 

Designation 1 Theoretical Experimental Ratio, experimental 
t o  theore t ica l  -+ 

Uul t 
Uult 

l o l m  

ss-1 
ss-2 
ES-1 
ES-2 
s-1 
s-2 
M- 1 
M-2 
1-1 
1-2 
1-3 

ML-1 
L-1 
L-2 

ss-1 
s-1 
DS-1 
RM- 1 
MS-1 

1-2 
1-1 
L-1 

~~ 

37,250 
37,230 
57,250 
37,250 
57,250 
57,250 
37,250 
57,250 
57,250 
57,250 
57,250 
57,250 
57,250 
37,250 

~3,600 
~3,600 
~3,600 
~3,600 
L3,600 
~3,600 
~3,600 
~3,600 

37,150 
37,650 
37,800 
36,800 
37,270 
36,800 
36,600 
36,200 
35,750 
36,800 
36,350 
35,800 
32,200 
32,350 

0 9 997 
1.012 
1.016 

.988 
1.002 

.988 
983 
972 

.960 

.988 
9 976 
.982 
958 

9 963 

37,250 
37,250 
37,250 
37,250 
37,250 
37,250 
37,250 
37,250 
37,250 
37,250 
l36,500 
'33,600 
'33,600 

15.0 
19.3 
19.3 
27.2 
27.2 
38.0 
38.0 
46.0 
46.0 
46.0 
51.0 
56.0 
56.0 

21.2 
43.0 
58.0 
71.0 
76.2 
85.8 
85.8 
-27.5 

0 975 
1.020 
1.002 

975 
995 

1.010 
970 

9 963 

21,950 
19,920 
17,700 
15,320 
14,500 
13,740 
13,740 
b6,480 

1.57C 
1.49; 
1.30: 
1.09; 
1.061 
1.01; 

.98: 

1.9Q 
1. go( 
1.86: 
1.62: 
1.361 
1.252 
1.219 
1.219 
1 193 
1.103 

970 

----- 

----- 

1.050 

1.027 
1.044 

1.020 
1.049 ----- 
----- 
----- 
1.118 
1 177 
1.172 
1.222 
1.113 
1.154 
1.110 
1.163 
1.160 
1.103 
----- 
e----  

21,390 
20,350 
17,750 
14,920 
14,420 
13,790 
13,330 
6,240 

16,,820 
16,300 
15,930 
13,900 
11,640 
io ,  710 
10,420 
10,420 
10,220 

9,440 
8,300 
7,120 

ss-1 
ES -1 
D S - 1  
s-1 

Ms -1 
M-1 

MA-1 
MA-2 
RM-1  
ML-1 

18, ogo 
16,620 
15,500 

11,600 
io ,  700 
10,200 
10,200 
9,380 
8,860 
8,560 

b7,300 

14,140 

0 930 
.982 

1.028 
983 

1.003 
1. ooc 
1.021 
1.021 
1. o8E 
1.064 

97c 
97; 

20.2 
40 
50 
59.9 
75 
79.9 
83 
83 
91.5 
.oo 
.11 
-20 

%ate c r i t i c a l  s t r e s s  

b ~ ~ e r  s t r e s s .  

3s determined by NACA top-of-knee method. 
c -  - 

N.4CaA 
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R G 

1 

3 

(a)  Local deflections w1 i n  postbuckling range of s t ra ight  column and 

l o c a l  deflections w2 imposed during column buckling. 

(b)  Column bending stresses u2 caused by column buckling. 

( c )  Superimposed loca l  deflections w2 caused by column buckling. 

Figure 2.-  Distortions of and column bending stresses i n  the cross section 
Of square tubes after column buckling i n  the  postbuckling range of the 
plates .  
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6z 

6Crl 

644 
de" 

C c.c 14LU 

Figure 3 . -  D i a g r a m  of average s t ress  uav plotted against  un i t  shortening 

eaV 
column remains s t ra ight .  After column buckling a t  average s t r e s s  cru 
average s t r e s s  i n  plates  Bc and AD ( f ig .  2) follows the curves CF 
and CO, respectively. 

f o r  tube w i t h  square cross section. Broken l i n e  OAB applies i f  
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6 
cp2 

0 

I 

Figure 4 . -  D i a g r a m  of average stress uav plot ted against  u n i t  shortening 

'av 
l i ne  ODE and curve OF apply i n  case of an i n i t i a l l y  f l a t  p l a t e  and of a 
plate  with i n i t i a l  deflection, respectively. 

for a plate t ha t  i s  e l a s t i ca l ly  restrained along the s ides .  Broken 
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45' 

1 

(a) Plate  buckling with half wave length a i n  longitudinal direction. 

(b) Local deflections w1 i n  postbuckling range of s t ra ight  column. 

Figure 3.- Distortions of and stresses i n  column with H-section before 
and a f t e r  column buckling i n  postbuckling range of plates .  
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(c) Compressive stresses a1 in postbuckling range in flange of straight 
column. 

(d) Local deflections w1 + w2' after incipient column buckling. 

Figure 5.-  Continued. 
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(e) Column bending stresses u2' caused by column buckling. 

( f )  Excess deflections w2' occurring after incipient column buckling. 

Figure 5.- Concluded. 
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Stre'' 

(a) Variation of u,+. and uo' in  r i g h t  flange with loca l  deflections 
Il. I= 

. .  

wlf and w2f 

)...e 
b i n  t 

(b) Variation of the  deflecting forces a t  a ce r t a in  point of r i gh t  flange 
w i t h  deflections wlf and w 2 ' .  - 

Figure 6.- Determination of the work done during loca l  deflections of r i g h t  
and l e f t  flanges of H-section. - 
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( c )  Variation of alf 

I 

and a2' i n  l e f t  flange with loca l  deflections 

w and w2'. 
If 

(d) Variation of deflecting forces at a cer ta in  point of l e f t  flange with 
deflections wlf and w2'. 

Figure 6.- Concluded. 
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Figure 7. - Compressive 

NACA TN 2994 

stresses alw in web of H-section. 
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I I 
I I 

1 L I 
I 1 -  - I 

Figure 8.- D i a g r a m  of Euler stress uE 
slenderness L/r.  The branches aU and (J of the  ultimate s t r e s s  

r e fe r  t o  the e l a s t i c  and p las t ic  range, respectively. 

and ultimate s t r e s s  plotted against 

UP 
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Figure 9. - D i a g r a m  of ‘E9 ‘u, and u UP plot ted against  slenderness L/r  

in rase  where, with column buckling i n  the postbuckling range, p l a s t i c  
lamations occur from the beginning. 

I --- - 
def o 
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Figure 10.- Cross section of H-section, showing notations. 

79 
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(a) Local deflections w1 i n  postbuckling range of s t r a igh t  tube. 

+ - t 4  

(b) Compressive s t resses  al i n  postbuckling range of straight tube. 

I 

( c )  Local deflections w1 + w2' a f t e r  incipient column buckling. 

(a) Column bending s t resses  u2a' 
buckling. 

Figure 12.- Distortions of cross section and s t resses  in  tube with square 
cross section before and a f t e r  column buckling i n  the postbuckling 
region of the plates .  

i n  plates  AB and DC caused by COhmn 
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. 

st resses  u ' i n  p l a t e  BC caused 
2s 

n 
column buckling. 

( f )  Excess deflections w21 occurring a f t e r  incipient column buckling. 

(g) Right half of f igure 12(f). 

Figure 12.- Concluded. 
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ck i" B 

(a)  Plan view of p l a t e  AB. 

(b)  Section of deflected p la te  AB a t  x = 0, showing deflections a t  point K. 

( c )  Tensile membrane s t resses  up' ' ' caused by excess deflections ~ 2 a '  
for y '  > 0 in  case a t  y '  = 0 and y '  = b/2 no displacement i n  the 
Y'-direction occurs. 

(d) Membrane s t resses  up'' caused by ~ 2 8 '  f o r  y' > 0 i f  l i nes  
y '  = 0 
held s t ra ight .  

and y' = b/2 a re  f r ee  t o  move i n  the Y'-direction, but a r e  - 
(e) Actual membrane stresses u ' a t  y '  = b/4. 

c Ym 

Figure 13.- Determination of the membrane s t resses  om' t o  which the 

membrane s t resses  u ' are equivalent. ym 



( f )  Membrane s t resses  a a t  x = 0. Ym 

( g )  Actual membrane s t resses  u a t  x = 0 .  ;ym 

(h)  Superimposed membrane s t resses  uyl i n  order t o  reduce membrane 

s t resses  a Y t 1  t o  actual  membrane s t resses  uy'. 

Figure 13. - Concluded. 

f 
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Figure 14.- Cross section of tube, showing notations.  
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(a) Buckling of initially straight column. 

(b) Deflection of column with initial eccentricity wi. 

Figure 16.- Determination of effect of crookedness of column. 



Figure 17.- Load-deflection diagram of square tube of "E" series with 
slenderness ratio L/r = 75 and initial eccentricity wi. 
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Figure 20.- View of test  setup. Column shown is L 3 - W .  
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Figure 21.- Side view of t e s t  setup. 
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